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Roadmap

In this lecture, our goal is to figure out how to represent the stochastic process f(X;) with a
general function f(-). In calculus, if X; is a deterministic and differentiable function w.r.t. time ¢,
Newton-Leibniz formula tells us:

F(X0) = F(Xo) + /0 f(X.)dX,.

However, in stochastic calculus, directly applying the Newton-Leibniz formula is incorrect. A simple
example is f(z) = 2% and X; = By:

t t
F(By) = F(By) + /0 /(BB + 2t = f(Bo) +2 /0 B.dB, + 21,

Thus, we need a new formula to extend the Newton-Leibniz formula to fit in stochastic calculus,
which is called It6 formula. We will study It6 formula in the following line:

(1) 1 dimension and X; = B;.
(2) 1 dimension and X is an It6 process.
(3) Multi-dimension.
In this course, we restrict our analysis on the following stochastic process class.

Definition 0.1 (It6 Process). For a stochastic process X (-) on (Q,P, F), we call it Ité process if
there exists F € L' and G € L% such that:

X() :X(o)+/0' F(s)ds—i—/g‘ G(s)dB,.

We also denote the process in differential form:

dX; = F(t)dt + G(t)dB,.



1 Warm-up: Itd6 Formula with X; = B,
Let’s do an intuitive analysis, which is mathematically incorrect. By previous lectures, we know:
dB; = Vdt > dt,

which means dB; is a half-order term dominating the first order term dt. Thus, by applying Taylor
expansion, we have:

df (By) = f(Bo) + f'(By)dB; + %J""(Bt)(dBt)2 +o((dBy)?)
~ f(Bo) + f'(B;)dB; + %f”(Bt)dt + o(dt).

Thus, the It6 formula should be:

Theorem 1.1 (It6 formula 1). Suppose f(-) € C?, then we have:

f(B) = £(Bo) /f dB+/f”

Equivalently, we also denote it in differentiable form:
1
df(Bi) = f'(Be)dBy + 5 " (By)dt

In the following, we prove Theorem 1.1 rigorously. We consider a partition I, : 0 =ty < t; <
- <t, =tand A, = max;— ..n [t; — t;—1|, we have:

f(B) = f(Bo) =) (f(By)— f(By_,))
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where (a) is due to mean value theorem. For the first term, by definition of stochastic integral, it

satisfies:

n t
Z f/(Btifl) (Bti - Bti—l) Lﬁ / f/(Bs)st- (1)
i=1 0

For the second term, we notice that, in the worst scenario that f’(-) is Lipchitz, we have:

n

> (&) = '(Buy)) (Br = Buy)

1
25 Zf”("?ti) (Bti - Bti—1)2 , Where M, € [Bti7Bti—1] or 7, € [B ti— 1?Bt ]



Z " Bt + H Bt )) (Btz' - Bti—l)z'
i=1 i= 1

We notice that (Bti — Bti—l) ~t; —t;_1 and ‘f”(ﬁti) — f”(Bti71)| ~ 0, where proof is deferred to
Lemma 1.1 and Lemma 1.2. Then, we would like to expect the second term would converge to:

n

t
> (£ = £1(B) (B = Bu) = 5 [ £/(Bds 2)

=1

Combining Eqn (1) and Eqn (2), we have:

F(By) — [(Bo) = /f dB+/f”

Lemma 1.1. For a bounded and continuous function g(-), we have:

n t
menwwﬂmf%AmBm
=1

Lemma 1.2. For a bounded and uniform continuous function g(-) and {t;}2_, is an equal partition
on [0,t] with size 27", for any n, € [By, ,, Bt,], we have:
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S (9lm) — 9(Br,_,)) (Br, — By,_,)* 3 0.
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Corollary 1.1. Suppose f(t,z) € C* x C2, then we have:

b0f(s, Bs L of(s, Bs L 9%f(s, Bs
) = 10,80 + [ HBas sy [FIEBap, o o [T E g,

Equivalently, we also denote it in differentiable form:
df(t, Bt) = ft,(t7 Bt)dt + fa/;(t, Bt)dBt + f” (t Bt)
Example 1.1. exp (th — % ) is a martingale w.r.t. (F¢)e>o0-

Proof. Let f(t,z) = exp (ca: — %t), we have:

fi(t,xz) = exp <cx — C;t) . <—622> ,

2
fr(t,z) = exp (cx — 62t> ‘¢,

2
" (t,x) = exp <cx - 2t> e

df(tv Bt) = f(ta Bt)dBt

Apply Corollary 1.1, we have:

Thus, it is martingale. O



2 It6 Formula with Ito6 process X,
Similarly, we also do an intuitive analysis at first. By definition 3.1, we have:
dX; = F(t)dt + G(t)dBy.
Then, by Taylor expansion, we have:
1
Af (Xy) =~ f/(Xp)d X + if”(Xt)(dXt)2

~ f/(Xe)F(t)dt + f(Xt)G(t)dBy + % (X)) (F(t)%(dt)* + 2F (t)G(t)dtd B, + G(t)*(dBy)?)

= (PR + L (XOGEP ) di + £ (XG4, + olar)

The rigorous statement is given as follows.

Theorem 2.1 (It6 formula 2). Suppose X; is an Ito process
dX; = F(t)dt + G(t)dB,

and f € C*(R). Then

t t 1 [t

£ = (X0 + [ FEIFGs+ [ )G+ [ )Gk

0 0 0

Equivalently, in differential form:
1
Af(Xe) = (f(X)F () + 50" (X)G(0)? ) dt + [ (X) G () dBy.

Corollary 2.1. Suppose X; is an Ito process

dX; = F(t)dt + G(t)dB,
and f € CY(R) x C%(R). Then

t s t s t 92 s
6.0 =10, %0) + [ 2L ’Xs)ds+/0 8f(5, Xs) ’XS)F(s)ds+1/0 KRICROCTREIN

0 ds Ox 2 Ox?
L of(s, Xs)
ST msT dBj
+/0 o G(s)

Equivalently, in differential form:
1
af(e,X0) = (0.0 + L0 XDF(O) + G124 (. X062 ) di + it X)G(OaB

Example 2.1. Suppose & is a bounded stochastic process adaptive to (Fi)i>0, then

exp < /0 edp, - /0 t 5§ds>

is a martingale w.r.t. (F¢)e>0.



Proof. Let f(x) =e® and X; = fot £sdBy — %fg ¢2ds. Applying It6 formula, we have:

1 1
df (Xy) = <eX* (—2§3> + 28“53) dt + eX1&dB,
= f(Xy)&dBy.
Thus, f(X;) is a martingale. O

3 Multi-dimensional It6 Formula

We denote the d-dimensional Brownian motion as B; = (Bt(l), e ,de)), where coordinates are
jointly independent. Similarly, we define the multi-dimensional 1t6 process in the following.

Definition 3.1 (Multi-dimensional It6 Process). For a d-dimension stochastic process X(-), we call
it Ito process if there exists F%) € L1 and GW) € £2 such that:

X(-) = X(0) +/ F(s)ds+/ G(s)dBs.
0 0
We also denote the process in differential form:
dX; = F(t)dt + G(t)dB;.
We do an intuitive analysis by Taylor expansion:
1
df (t,Xy) = f(t, Xg)dt + Vo f(t, Xy) TdX; + idXtTmef(t,Xt)dXt
1
= fi(t, X)dt + Vo f(t.X4) "dXy + 2B/ G (1) V2, (1, X1)G()dB
By the independence for different coordinates, we have dBt(i)dij ) = 0;;dt, which implies:
1
df (£, X¢) = f{(t, Xp)dt + Vo f (£, Xy) TdXy + 5 Tr (G(t)TV?mf(t, Xt)G(t)) dt

Lemma 3.1. For two independent Brownian motion Bgl) and Bt@), we consider a partition 11, :
O=ty<t1 <---<t, =t and denote:

n
1 1 2 2
Su= 3 (B B0) (B - B2)).
i=1
Then, we have E[S,] = 0 and E[S?] — 0.
Theorem 3.1 (Itd formula 3). Suppose X; is a d-dimension [to process

dX; = F(t)dt + G(t)dBy,

and f € CY(R) x C%(R?). Then

df (t, Xy) = (fé(ta X;) + Vaf (t,X4) "F(t) + %Tl" (G(t)TV?mf(t, Xt)G(t)>> dt + f'(X;)G(t)dB;.



By the multi-dimensional It6 formula, we can obtain the partial integration theorem by setting
flz,y) ==y

Theorem 3.2. Suppose X; and Y; are two It6 process, then we have:

d(X;Y:) = X;dY; + Yid X, + dX,dY;.

4 Applications

Example 4.1 (Ruin Problem). Suppose Xy = X¢ + bt + 0By is a drifted Brownian motion, X = x,
and x € (I,r). We denote the hitting time 7, = inf{t|X; = I} and 7, = inf{t|X; = r}. What is the
probability X; reaches | first, i.e. Py (1, < 7). What is the expectation, i.e. E[r].

Proof. We consider constructing a martingale f(X;) and applying optional sampling theorem. By
It6 formula, we have:

df (Xy) = o f'(X4)dB; + <bf’(Xt) + ;azf”(Xt)> dt.

Thus, we only need to solve the following ODE to make f(X;) be a martingale:

It is obvious that f(z) = exp (—3—23:). Furthermore, we denote 7 = inf{t|X; ¢ (I,7)}. By optional
sampling theorem (verify the conditions!) and have:

E[f(X,)] = E[f(X0)] = exp (—%x) .

o2
On the other side, we have:

E[f(X:)] = E[f(Xo)|7 = 7]P(7 = 7)) + E[f(X))|7 = n]P(T = 7)
= f(r)P(r, < 7))+ f(OP(7, > 7).

Thus, we conclude:
P(r. > 1) =

For expectation E[7], we consider constructing a martingale ¢(t, X;) = h(X;) + ¢ and applying
optional sampling theorem. By It6 formula, we have:

2
dg(t, Xt) = O’h/(Xt)dBt + <1 + bh,(Xt) + (;f”(Xt)) dt.
Thus, we only need to solve the followinng ODE to make g(¢, X;) be a martingale:

2
1+ b (Xy) + %f”(Xt) -0,



which is:

2b x
h(z) = A+ Bexp <—02m> — %
Furthermore, we require ¢(0,1) = ¢g(0,7) = 0 and = 0:
2b l
A+ Bexp|—21) = =
+ Bexp < -2 > 2 0,
2b r
A+ Bexp <—02r> 3= 0.
We obtain:
A e (=8l) = pexp (—37)
exp (= 231) —exp (=737)
l=r
B— b

Then, by optional sampling theorem, we have:

Elg(r, X7)] = E[g(0, Xo)] = h(x).

Besides, we notice:
Elg(r, X7)] = E[g(0, X7)] + E[7]

Thus, we have:

= El[7].

When b > 0, we let 7 — +00 and have:

E[Tl] = 4-00.

For b = 0, we construct a new martingale Z(X;) = X? — o%t?

. Proof is similar.



	Warm-up: Itô Formula with Xt=Bt
	Itô Formula with Itô process Xt
	Multi-dimensional Itô Formula
	Applications

