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Roadmap

In this lecture, our goal is to figure out how to represent the stochastic process f(Xt) with a
general function f(·). In calculus, if Xt is a deterministic and differentiable function w.r.t. time t,
Newton-Leibniz formula tells us:

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)dXs.

However, in stochastic calculus, directly applying the Newton-Leibniz formula is incorrect. A simple
example is f(x) = x2 and Xt = Bt:

f(Bt) = f(B0) +

∫ t

0
f ′(Bs)dBs + 2t = f(B0) + 2

∫ t

0
BsdBs + 2t.

Thus, we need a new formula to extend the Newton-Leibniz formula to fit in stochastic calculus,
which is called Itô formula. We will study Itô formula in the following line:

(1) 1 dimension and Xt = Bt.

(2) 1 dimension and Xt is an Itô process.

(3) Multi-dimension.

In this course, we restrict our analysis on the following stochastic process class.

Definition 0.1 (Itô Process). For a stochastic process X(·) on (Ω,P,F), we call it Itô process if
there exists F ∈ L1 and G ∈ L2 such that:

X(·) = X(0) +

∫ ·

0
F (s)ds+

∫ ·

0
G(s)dBs.

We also denote the process in differential form:

dXt = F (t)dt+G(t)dBt.
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1 Warm-up: Itô Formula with Xt = Bt

Let’s do an intuitive analysis, which is mathematically incorrect. By previous lectures, we know:

dBt ≈
√
dt > dt,

which means dBt is a half-order term dominating the first order term dt. Thus, by applying Taylor
expansion, we have:

df(Bt) ≈ f(B0) + f ′(Bt)dBt +
1

2
f ′′(Bt)(dBt)

2 + o((dBt)
2)

≈ f(B0) + f ′(Bt)dBt +
1

2
f ′′(Bt)dt+ o(dt).

Thus, the Itô formula should be:

Theorem 1.1 (Itô formula 1). Suppose f(·) ∈ C2, then we have:

f(Bt) = f(B0) +

∫ t

0
f ′(Bs)dBs +

1

2

∫ t

0
f ′′(Bs)ds.

Equivalently, we also denote it in differentiable form:

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt.

In the following, we prove Theorem 1.1 rigorously. We consider a partition Πn : 0 = t0 < t1 <
· · · < tn = t and ∆n = maxi=1,···n |ti − ti−1|, we have:

f(Bt)− f(B0) =

n∑
i=1

(
f(Bti)− f(Bti−1)

)
(a)
=

n∑
i=1

f ′(ξti)
(
Bti −Bti−1

)
, where ξti ∈ [Bti , Bti−1 ] or ξti ∈ [Bti−1 , Bti ]

=

n∑
i=1

f ′(Bti−1)
(
Bti −Bti−1

)
+

n∑
i=1

(
f ′(ξti)− f ′(Bti−1)

) (
Bti −Bti−1

)
where (a) is due to mean value theorem. For the first term, by definition of stochastic integral, it
satisfies:

n∑
i=1

f ′(Bti−1)
(
Bti −Bti−1

) L2→
∫ t

0
f ′(Bs)dBs. (1)

For the second term, we notice that, in the worst scenario that f ′(·) is Lipchitz, we have:

n∑
i=1

(
f ′(ξti)− f ′(Bti−1)

) (
Bti −Bti−1

)
=
1

2

n∑
i=1

f ′′(ηti)
(
Bti −Bti−1

)2 , where ηti ∈ [Bti , Bti−1 ] or ηti ∈ [Bti−1 , Bti ].
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=
1

2

n∑
i=1

f ′′(Bti−1)
(
Bti −Bti−1

)2
+

1

2

n∑
i=1

(
f ′′(ηti)− f ′′(Bti−1)

) (
Bti −Bti−1

)2
.

We notice that
(
Bti −Bti−1

)2 ≈ ti − ti−1 and
∣∣f ′′(ηti)− f ′′(Bti−1)

∣∣ ≈ 0, where proof is deferred to
Lemma 1.1 and Lemma 1.2. Then, we would like to expect the second term would converge to:

n∑
i=1

(
f ′(ξti)− f ′(Bti−1)

) (
Bti −Bti−1

)
→ 1

2

∫ t

0
f ′′(Bs)ds. (2)

Combining Eqn (1) and Eqn (2), we have:

f(Bt)− f(B0) =

∫ t

0
f ′(Bs)dBs +

1

2

∫ t

0
f ′′(Bs)ds.

Lemma 1.1. For a bounded and continuous function g(·), we have:
n∑

i=1

g(Bti−1)
(
Bti −Bti−1

)2 L2→
∫ t

0
g(Bs)ds.

Lemma 1.2. For a bounded and uniform continuous function g(·) and {ti}2
n

i=0 is an equal partition
on [0, t] with size 2−n, for any ηti ∈ [Bti−1 , Bti ], we have:

2n∑
i=1

(
g(ηti)− g(Bti−1)

) (
Bti −Bti−1

)2 a.s.→ 0.

Corollary 1.1. Suppose f(t, x) ∈ C1 × C2, then we have:

f(t, Bt) = f(0, B0) +

∫ t

0

∂f(s,Bs)

∂s
ds+

∫ t

0

∂f(s,Bs)

∂x
dBs +

1

2

∫ t

0

∂2f(s,Bs)

∂x2
ds.

Equivalently, we also denote it in differentiable form:

df(t, Bt) = f ′
t(t, Bt)dt+ f ′

x(t, Bt)dBt +
1

2
f ′′
xx(t, Bt)dt.

Example 1.1. exp
(
cBt − c2

2 t
)

is a martingale w.r.t. (Ft)t≥0.

Proof. Let f(t, x) = exp
(
cx− c2

2 t
)
, we have:

f ′
t(t, x) = exp

(
cx− c2

2
t

)
·
(
−c2

2

)
,

f ′
x(t, x) = exp

(
cx− c2

2
t

)
· c,

f ′′
xx(t, x) = exp

(
cx− c2

2
t

)
· c2.

Apply Corollary 1.1, we have:

df(t, Bt) = f(t, Bt)dBt.

Thus, it is martingale.
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2 Itô Formula with Itô process Xt

Similarly, we also do an intuitive analysis at first. By definition 3.1, we have:

dXt = F (t)dt+G(t)dBt.

Then, by Taylor expansion, we have:

df(Xt) ≈ f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2

≈ f ′(Xt)F (t)dt+ f ′(Xt)G(t)dBt +
1

2
f ′′(Xt)

(
F (t)2(dt)2 + 2F (t)G(t)dtdBt +G(t)2(dBt)

2
)

=

(
f ′(Xt)F (t) +

1

2
f ′′(Xt)G(t)2

)
dt+ f ′(Xt)G(t)dBt + o(dt)

The rigorous statement is given as follows.

Theorem 2.1 (Itô formula 2). Suppose Xt is an Itô process

dXt = F (t)dt+G(t)dBt,

and f ∈ C2(R). Then

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)F (s)ds+

∫ t

0
f ′(Xs)G(s)dBs +

1

2

∫ t

0
f ′′(Xs)G(s)2ds.

Equivalently, in differential form:

df(Xt) =
(
f ′(Xt)F (t) +

1

2
f ′′(Xt)G(t)2

)
dt+ f ′(Xt)G(t)dBt.

Corollary 2.1. Suppose Xt is an Itô process

dXt = F (t)dt+G(t)dBt,

and f ∈ C1(R)× C2(R). Then

f(t,Xt) =f(0, X0) +

∫ t

0

∂f(s,Xs)

∂s
ds+

∫ t

0

∂f(s,Xs)

∂x
F (s)ds+

1

2

∫ t

0

∂2f(s,Xs)

∂x2
G(s)2ds.

+

∫ t

0

∂f(s,Xs)

∂x
G(s)dBs

Equivalently, in differential form:

df(t,Xt) =

(
f ′
t(t,Xt) + f ′

x(t,Xt)F (t) +
1

2
f ′′
xx(t,Xt)G(t)2

)
dt+ f ′

x(t,Xt)G(t)dBt.

Example 2.1. Suppose ξt is a bounded stochastic process adaptive to (Ft)t≥0, then

exp

(∫ t

0
ξsdBs −

1

2

∫ t

0
ξ2sds

)
is a martingale w.r.t. (Ft)t≥0.
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Proof. Let f(x) = ex and Xt =
∫ t
0 ξsdBs − 1

2

∫ t
0 ξ

2
sds. Applying Itô formula, we have:

df(Xt) =

(
eXt

(
−1

2
ξ2t

)
+

1

2
eXtξ2t

)
dt+ eXtξtdBt

= f(Xt)ξtdBt.

Thus, f(Xt) is a martingale.

3 Multi-dimensional Itô Formula

We denote the d-dimensional Brownian motion as Bt = (B
(1)
t , · · · , B(d)

t ), where coordinates are
jointly independent. Similarly, we define the multi-dimensional Itô process in the following.

Definition 3.1 (Multi-dimensional Itô Process). For a d-dimension stochastic process X(·), we call
it Itô process if there exists F(i) ∈ L1 and G(ij) ∈ L2 such that:

X(·) = X(0) +

∫ ·

0
F(s)ds+

∫ ·

0
G(s)dBs.

We also denote the process in differential form:

dXt = F(t)dt+G(t)dBt.

We do an intuitive analysis by Taylor expansion:

df(t,Xt) = f ′
t(t,Xt)dt+∇xf(t,Xt)

⊤dXt +
1

2
dX⊤

t ∇2
xxf(t,Xt)dXt

= f ′
t(t,Xt)dt+∇xf(t,Xt)

⊤dXt +
1

2
dB⊤

t G(t)⊤∇2
xxf(t,Xt)G(t)dBt

By the independence for different coordinates, we have dB
(i)
t dB

(j)
t = δijdt, which implies:

df(t,Xt) = f ′
t(t,Xt)dt+∇xf(t,Xt)

⊤dXt +
1

2
Tr

(
G(t)⊤∇2

xxf(t,Xt)G(t)
)
dt

Lemma 3.1. For two independent Brownian motion B
(1)
t and B

(2)
t , we consider a partition Πn :

0 = t0 < t1 < · · · < tn = t and denote:

Sn =
n∑

i=1

(
B

(1)
ti

−B
(1)
ti−1

)(
B

(2)
ti

−B
(2)
ti−1

)
.

Then, we have E[Sn] = 0 and E[S2
n] → 0.

Theorem 3.1 (Itô formula 3). Suppose Xt is a d-dimension Itô process

dXt = F(t)dt+G(t)dBt,

and f ∈ C1(R)× C2(Rd). Then

df(t,Xt) =

(
f ′
t(t,Xt) +∇xf(t,Xt)

⊤F(t) +
1

2
Tr

(
G(t)⊤∇2

xxf(t,Xt)G(t)
))

dt+ f ′(Xt)G(t)dBt.
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By the multi-dimensional Itô formula, we can obtain the partial integration theorem by setting
f(x, y) = xy.

Theorem 3.2. Suppose Xt and Yt are two Itô process, then we have:

d(XtYt) = XtdYt + YtdXt + dXtdYt.

4 Applications

Example 4.1 (Ruin Problem). Suppose Xt = X0 + bt+ σBt is a drifted Brownian motion, X0 = x,
and x ∈ (l, r). We denote the hitting time τl = inf{t|Xt = l} and τr = inf{t|Xt = r}. What is the
probability Xt reaches l first, i.e. Px (τl < τr). What is the expectation, i.e. E[τl].

Proof. We consider constructing a martingale f(Xt) and applying optional sampling theorem. By
Itô formula, we have:

df(Xt) = σf ′(Xt)dBt +

(
bf ′(Xt) +

1

2
σ2f ′′(Xt)

)
dt.

Thus, we only need to solve the following ODE to make f(Xt) be a martingale:

− 2b

σ2
f ′(x) = f ′′(x).

It is obvious that f(x) = exp
(
− 2b

σ2x
)
. Furthermore, we denote τ = inf{t|Xt ̸∈ (l, r)}. By optional

sampling theorem (verify the conditions!) and have:

E[f(Xτ )] = E[f(X0)] = exp

(
− 2b

σ2
x

)
.

On the other side, we have:

E[f(Xτ )] = E[f(Xr)|τ = τr]P(τ = τr) + E[f(Xl)|τ = τl]P(τ = τl)

= f(r)P(τr < τl) + f(l)P(τr > τl).

Thus, we conclude:

P(τr > τl) =
f(r)− f(x)

f(r)− f(l)
.

For expectation E[τl], we consider constructing a martingale g(t,Xt) = h(Xt) + t and applying
optional sampling theorem. By Itô formula, we have:

dg(t,Xt) = σh′(Xt)dBt +

(
1 + bh′(Xt) +

σ2

2
f ′′(Xt)

)
dt.

Thus, we only need to solve the followinng ODE to make g(t,Xt) be a martingale:

1 + bh′(Xt) +
σ2

2
f ′′(Xt) = 0,
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which is:

h(x) = A+B exp

(
− 2b

σ2
x

)
− x

b
.

Furthermore, we require g(0, l) = g(0, r) = 0 and = 0:

A+B exp

(
− 2b

σ2
l

)
− l

b
= 0,

A+B exp

(
− 2b

σ2
r

)
− r

b
= 0.

We obtain:

A =
r
b exp

(
− 2b

σ2 l
)
− l

b exp
(
− 2b

σ2 r
)

exp
(
− 2b

σ2 l
)
− exp

(
− 2b

σ2 r
) ,

B =
l−r
b

exp
(
− 2b

σ2 l
)
− exp

(
− 2b

σ2 r
) .

Then, by optional sampling theorem, we have:

E[g(τ,Xτ )] = E[g(0, X0)] = h(x).

Besides, we notice:

E[g(τ,Xτ )] = E[g(0, Xτ )] + E[τ ] = E[τ ].

Thus, we have:

E[τ ] =
l − x

b
+

l − r

b

exp
(
− 2b

σ2x
)
− exp

(
− 2b

σ2 l
)

exp
(
− 2b

σ2 l
)
− exp

(
− 2b

σ2 r
) .

When b < 0, we let r → +∞ and have:

E[τl] =
l − x

b
.

When b > 0, we let r → +∞ and have:

E[τl] = +∞.

For b = 0, we construct a new martingale Z(Xt) = X2
t − σ2t2. Proof is similar.
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